Reinforcement learning with kernels and Gaussian processes
نویسنده
چکیده
Kernel methods have become popular in many sub-fields of machine learning with the exception of reinforcement learning; they facilitate rich representations, and enable machine learning techniques to work in diverse input spaces. We describe a principled approach to the policy evaluation problem of reinforcement learning. We present a temporal difference (TD) learning using kernel functions. Our approach allows the TD algorithm to work in arbitrary spaces as long as a kernel function is defined in this space. This kernel function is used to measure similarity between states. The value function is described as a Gaussian process and we obtain a Bayesian solution by solving a generative model. A SARSA based extension of the kernel-based TD algorithm is also mentioned.
منابع مشابه
Geodesic Gaussian kernels for value function approximation
The least-squares policy iteration approach works efficiently in value function approximation, given appropriate basis functions. Because of its smoothness, the Gaussian kernel is a popular and useful choice as a basis function. However, it does not allow for discontinuity which typically arises in real-world reinforcement learning tasks. In this paper, we propose a new basis function based on ...
متن کاملRobot Control by Least-Squares Policy Iteration with Geodesic Gaussian Kernels
The least-squares policy iteration approach works efficiently in value function approximation, given appropriate basis functions. Because of its smoothness, the Gaussian kernel is a popular and useful choice as a basis function. However, it does not allow for discontinuity which typically arises in real-world reinforcement learning tasks. To overcome this problem, new basis functions called geo...
متن کاملKernel Least-Squares Temporal Difference Learning
Kernel methods have attracted many research interests recently since by utilizing Mercer kernels, non-linear and non-parametric versions of conventional supervised or unsupervised learning algorithms can be implemented and usually better generalization abilities can be obtained. However, kernel methods in reinforcement learning have not been popularly studied in the literature. In this paper, w...
متن کاملMultiple Kernel Learning and Automatic Subspace Relevance Determination for High-dimensional Neuroimaging Data
Alzheimer’s disease is a major cause of dementia. Its diagnosis requires accurate biomarkers that are sensitive to disease stages. In this respect, we regard probabilistic classification as a method of designing a probabilistic biomarker for disease staging. Probabilistic biomarkers naturally support the interpretation of decisions and evaluation of uncertainty associated with them. In this pap...
متن کاملOn the Numeric Stability of Gaussian Processes Regression for Relational Reinforcement Learning
In this work we investigate the behavior of Gaussian processes as a regression technique for reinforcement learning. When confronted with too many mutually dependant learning examples, the matrix inversion needed for prediction of a new target value becomes numerically unstable. By paying attention to using suitable numerical techniques and employing QR-factorization these instabilities can be ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005